Processing math: 79%
当前位置:首页 > 动态规划 > 区间DP > 正文
洛谷P7914括号序列(CSPS2021)
1910+

题目大意:给定一个长度为n的字符串,对于?可以填入(、)、*,共有多少种填法满足括号匹配?注意,连续*不超过m个,括号里面两端不能同时为*!

题目描述

小 w 在赛场上遇到了这样一个题:一个长度为 n 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。

身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。

具体而言,小 w 定义“超级括号序列”是由字符 `(`、`)`、`*` 组成的字符串,并且对于某个给定的常数 k,给出了“符合规范的超级括号序列”的定义如下:

1. `()`、`(S)` 均是符合规范的超级括号序列,其中 `S` 表示任意一个仅由**不超过** \bmk **个**字符 `*` 组成的非空字符串(以下两条规则中的 `S` 均为此含义);
2. 如果字符串 `A` 和 `B` 均为符合规范的超级括号序列,那么字符串 `AB`、`ASB` 均为符合规范的超级括号序列,其中 `AB` 表示把字符串 `A` 和字符串 `B` 拼接在一起形成的字符串;
3. 如果字符串 `A` 为符合规范的超级括号序列,那么字符串 `(A)`、`(SA)`、`(AS)` 均为符合规范的超级括号序列。
4. 所有符合规范的超级括号序列均可通过上述 3 条规则得到。

例如,若 k=3,则字符串 `((**()*(*))*)(***)` 是符合规范的超级括号序列,但字符串 `*()`、`(*()*)`、`((**))*)`、`(****(*))` 均不是。特别地,空字符串也不被视为符合规范的超级括号序列。

现在给出一个长度为 n 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 `?` 表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?

可怜的小 c 并不会做这道题,于是只好请求你来帮忙。

输入输出格式

输入格式

第一行,两个正整数 n,k

第二行,一个长度为 n 且仅由 `(`、`)`、`*`、`?` 构成的字符串 S

输出格式

输出一个非负整数表示答案对 109+7 取模的结果。

输入输出样例

输入样例 #1

7 3
(*??*??

输出样例 #1

5

输入样例 #2

10 2
???(*??(?)

输出样例 #2

19

输入样例 #3

见附件中的 bracket/bracket3.in。

输出样例 #3

见附件中的 bracket/bracket3.ans。

输入样例 #4

见附件中的 bracket/bracket4.in。

输出样例 #4

见附件中的 bracket/bracket4.ans。

说明

**【样例解释 #1】**

如下几种方案是符合规范的:

“`plain
(**)*()
(**(*))
(*(**))
(*)**()
(*)(**)
“`

**【数据范围】**

| 测试点编号 | n | 特殊性质 |
|:-:|:-:|:-:|
| 13 | 15 | 无 |
| 48 | 40 | 无 |
| 913 | 100 | 无 |
| 1415 | 500 | S 串中仅含有字符 `?` |
| 1620 | 500 | 无 |

对于 100% 的数据,1kn500

解题思路

为了避免重复计算,我们可以把各种情况分开处理,lr记录完整一对括号的方案,lxr记录开头是(结尾是)且不止一对括号的方案,xr记录开头是*结尾是)的方案,lx记录开头是(结尾是*的方案,x记录全是*的方案。

首先,可以预处理长度为2的纯括号方案和长度不超过m的全*区间,这样后面就可以考虑少很多东西了。

接着就是套用区间DP模板,从长度小的开始,递推出长度大的区间。如lx[i][j]记录区间[i, j]的方案数,要求开头是(,结尾是*,显然左边必须有一对完整括号,可以是完整一对括号lr,也可以是多对括号lxr。对于lxr也是一样的,右边(或者左边)有一对完整括号,左边只需要满足(开头即可,即可以是lr、lxr、lx。

最后是lr情况,必须两端是括号,里面合法即可,可以是lx、xr、lr、lxr、x等。

最终答案,必然是(开头、)结尾。(感谢cp15266提供考场代码)

程序实现

洛谷P7914括号序列(CSPS2021):等您坐沙发呢!

发表评论

您必须 [ 登录 ] 才能发表留言!