题目大意:有很多歌电影院,互相到达的电影院,只需要找一个来烧,少每个电影院都有不同的费用,问怎样烧费用最少,最少费用的烧法有多少种?
题目描述
众所周知,HXY已经加入了FFF团。现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了。这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用。m条单向通道连接相邻的两对情侣所在电影院。然后HXY有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可。并且每对情侣只需烧一遍,电影院可以重复去。然后她想花尽可能少的费用烧掉所有的情侣。问最少需要多少费用,并且当费用最少时的方案数是多少?由于方案数可能过大,所以请输出方案数对1e9+7取模的结果。
(注:这里HXY每次可以从任何一个点开始走回路。就是说一个回路走完了,下一个开始位置可以任选。所以说不存在烧不了所有情侣的情况,即使图不连通,HXY自行选择顶点进行烧情侣行动。且走过的道路可以重复走。)
输入输出格式
输入格式:
第一行,一个整数n。
第二行,n个整数,表示n个情侣所在点的汽油费。
第三行,一个整数m。
接下来m行,每行两个整数xi,yi,表示从点xi可以走到yi。
输出格式:
一行,两个整数,第一个数是最少费用,第二个数是最少费用时的方案数对1e9+7取模
输入输出样例
输入样例#1:
3 1 2 3 3 1 2 2 3 3 2
输出样例#1:
3 1
输入样例#2:
3 10 20 10 4 1 2 1 3 3 1 2 1
输出样例#2:
10 2
说明
数据范围:
对于30%的数据,1<=n,m<=20;
对于10%的数据,保证不存在回路。
对于100%的数据,1<=n<=100000,1<=m<=300000。所有输入数据保证不超过10^9。
解题思路
每个强连通分量都要烧一次。每个强连通分量都有自己的最小费用方案,各个分量的方案数乘起来就是方案总数。